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ABSTRACT
Introduction: Obstetric history and maternal body composition and lifestyle may be associated with 
serious complications both for the mother, such as gestational diabetes mellitus (GDM), and for the 
fetus, including congenital malformations such as neural tube defects (NTDs).
Areas covered: In view of the recent knowledge, changes in nutritional and physical activity habits 
ameliorate glycemic control during pregnancy and in turn improve maternal and neonatal health out
comes. Recently, a series of small clinical and experimental studies indicated that supplemenation with 
inositols, a family of insulin sensitizers, was associated with beneficial impact for both GDM and NTDs.
Expert opinion: Herein, we discuss the most significant scientific evidence supporting myo-inositol 
administration as a prophylaxis for the above-mentioned conditions.
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1. Introduction

Several factors can be decisive in the onset of unfavorable 
maternal and fetal outcomes, lifestyle among them [1]. In 
particular, poor maternal nutritional habits, and especially 
a lack of glycemic control, may represent leading causes of 
complications including gestational diabetes mellitus (GDM), 
large for gestation age babies (LGA) [2,3], and congenital 
abnormalities affecting the fetal central nervous system, 
namely neural tube defects (NTDs) [4].

Recent scientific evidence [5,6] has shown that the supple
mentation of inositols is correlated with achievement of 
a healthy pregnancy. In particular, myo-inositol (MI) may pre
vent the onset of GDM as well as reduce the risk of recurrence 
of NTDs. Here, the authors have gathered data from their own 
and others’ studies to provide an overview of up-to-date 
knowledge on the mechanisms by which MI may prevent 
GDM and NTDs, and the implications of these findings for 
future clinical practice.

2. The inositols family

2.1. Biochemical properties

Inositols are sugar alcohols (polyols) that occur in nine 
different stereoisomeric forms. MI, the most common natu
rally occurring one, can be transformed into numerous 
derivatives mainly through either epimerization or phos
phorylation of one or several of its hydroxyl groups. The 
conversion to D-chiro-, scyllo-, muco-, neo- occurs by 
means of specific epimerases. In particular, the conversion 
rate of MI to D-chiro-inositol (DCI) ranges from 7% to 
about 9%, as measured by the analysis of radiolabeled 
[3 H]-MI, whereas the production of other isomers is mini
mal, not exceeding 0.06% of total radiolabeled MI [7]. The 
human body can actively synthetize MI: in particular, the 
kidneys produce up to 4 g/day [8]. MI derives from the 
isomerization of glucose-6-phosphate (G6P) to inositol- 
3-phosphate (Ins3P) by the enzyme D-3-myo- 

inositol phosphate synthase (inositol synthase, Ino1 or 
MIPS1) [9]. Then, inositol-3-phosphate is dephosphorylated 
to free MI by means of inositol-monophosphatase-1 (IMPA- 
1 or IMPase) [10]. Free MI can also be generated by the 
recycling of inositol-1,4,5-trisphosphate (InsP3) and inosi
tol-1,4-bisphosphate (InsP2) generated in inositol phos
phate signaling [11]. Endogenous production of MI and 
DCI varies depending on tissue-specific needs [12], and it 
is known that certain organs, such as brain, need high MI 
concentrations (10- to 15-fold higher values than are 
detected in blood) [9].

Inositol transporters are responsible for uptake and intra
cellular distribution of inositol. They were classified into two 
groups according to their transport mechanism. Sodium/myo- 
inositol cotransporter 1 and 2 (SMIT1 and SMIT2) are coupled 
with sodium ions while proton/myo-inositol cotransporter 
(HMIT), coupled with protons [13]. They have a different tissue 
distribution. So far, only SMIT2 was detected in the duodenum 
and jejunum, the two districts of intestine where they were 
found [14].

2.2. Physiological activities

Inside the cells, inositols are not only present as free mole
cules, but also as components of membrane phosphoinosi
tides (inositol-containing lipids), including phosphatidyl- 
inositol phosphate and phosphatidyl-inositol bisphosphate 
(PIP2), both compounds with important physiological roles 
[15]. Hydrolysis of PIP2 by phospholipase C (PLC) produces 
inositoltrisphosphate (Ins-1,4,5P3, InsP3), which regulates 
activities of hormones such as FSH, TSH, and insulin as 
a second messenger [15]. The interaction between InsP3 and 
the membrane receptors of mitochondria and endoplasmic 
reticulum stimulates calcium influx into the cytosol. This 
leads to the activation of protein kinase C (PKC) and mediates 
specific cellular responses.

Inositols are involved in insulin signaling, with both MI and 
DCI functioning as insulin second messengers, although they 
mediate different actions of insulin in humans [16–19]. There is 
an interplay between MI uptake and cellular glucose uptake, 
and MI content is elevated in tissues such as brain, heart, and 
ovary that have high glucose utilization and consumption 
[18,20]. MI also inhibits adenylate cyclase, thus reducing the 
release of free fatty acids from adipose tissues [21]. Conversely, 
DCI levels are elevated in tissues specialized in glycogen sto
rage, including liver, muscle, and fat, whereas DCI has low 
abundance in tissues with high glucose utilization [7].

DCI and MI glycans (IPG-P and IPG-A, respectively) shift 
glucose metabolism toward glycogen synthesis or glucose 
catabolism, respectively. In the latter case, MI enhances phos
phate-dehydrogenase activity (PDH), thus stimulating pyru
vate catabolism. IPG-P seems preferentially produced in 
metabolic stress, following an increase of insulin release. 
Indeed, after insulin stimulation, MI is transformed into DCI, 
through an NAD-NADH-dependent epimerase, to maintain 
a suitable MI:DCI ratio, as required for tissue metabolism 
[19,22,23].

MI significantly inhibits glucose duodenal absorption and 
therefore counteracts a rise in blood glucose. This finding can 

Article highlights

● Gestational diabetes mellitus (GDM) and neural tube defects (NTDs) 
may be highly dependent on maternal nutritional habits, especially 
on the lack of glycemic control.

● Myo-inositol (MI), because of its role as second messenger of insulin 
and insulin sensitizer, can prevent the onset of GDM, as well as 
reduce the risk of recurrence of NTDs, leading to the achievement 
of a healthy pregnancy.

● After insulin stimulation, MI is transformed into DCI, through an NAD- 
NADH-dependent epimerase, to maintain a suitable MI:DCI ratio, 
required for tissue metabolism.

● The concomitant administration of MI and DCI seems to perform less 
well than MI alone, and when the two stereoisomers were directly 
compared, women treated with MI alone compared to those who 
received MI plus DCI or DCI alone showed largest benefit.

● For congenital malformations like NTDs, MI peri-conceptional supple
mentation could represent a novel means of prevention, particularly 
in those women resistant to folic acid (FA) supplementation.
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be explained by a mutual interference of intestinal uptake by 
MI and glucose [19,24]. In addition to the above-cited effects, 
MI also acts as one of the FSH second messengers in the ovary, 
as well as of the TSH in the thyroid, both mechanisms 
mediated by adenylate cyclase [19,25].

2.3. Pharmacokinetics

Some patients, identified as ‘inositol-resistant’, exhibit 
a weaker than normal response to MI treatment, owing to 
poor absorption by the oral route.

Aiming to improve MI clinical efficacy, Monastra et al. 
planned a pharmacokinetics study [26] in human healthy 
volunteers to test the effects of α-LA on MI bioavailability, 
considering the wide range of α-LA activities, especially the 
effects on improved mineral bioavailability [27].

When administered alone, MI average peak plasma concen
tration at 180 min increased about threefold versus the base
line, whereas when associated with α-LA, it augmented 
fourfold.

After administration of MI and α-LA, MI plasma concentra
tions were significantly higher than after administration of MI 
alone: the increase of Cmax (μmol/l) was 32.4%, while AUC 
(0–300) increased by 27.5% [26].

Moreover, with the aim to explain the mechanism under
lying this effect, the authors carried out an in vitro experiment. 
In detail, they observed that in the presence of digested α-LA, 
MI passage across a monolayer of human Caco-2 cells, used to 
simulate the intestinal barrier, significantly increased, thereby 
achieving a higher plasma concentration compared with MI 
administration alone [26].

This combination of MI with α-LA has proven to be useful 
for improving the treatment of Polycystic Ovary Syndrome 
(PCOS) MI-resistant patients [28]. A goal for the future will be 
to investigate further this combination of MI and α-LA, for its 
ability to enhance the potential beneficial effects of MI on 
complex pathologies, such as GDM and NTDs (described 
below).

3. The safety profile of inositols

Before discussing the efficacy of inositols in some pathological 
conditions, it is important to consider the available data on 
inositol’s safety as a supplement. As stated by the United 
States Food and Drug Administration (FDA), MI is included in 
the list of compounds that are ‘generally recognized as safe’ 
(GRAS). This means inositol has proven to be free of side- 
effects and, importantly, is safe for use in pregnancy [19,29].

A recent meta-analysis on 965 pregnant women affected by 
GDM, who were randomized to receive MI, placebo, or no 
treatment, revealed no adverse maternal events, and no con
genital malformations in the fetuses or newborns [30]. 
Moreover, a Cochrane Review of the relationship between 
inositol and GDM reported no adverse events associated 
with inositol antenatal supplementation [31].

4. MI in management of GDM

4.1. GDM diagnosis

GDM, defined as glucose intolerance solely diagnosed during 
pregnancy, is characterized by increased insulin resistance and 
hyperglycemia. It represents a worldwide public health pro
blem with a variable prevalence ranging from 2% to 30%, 
depending on the diagnostic criteria and the population stu
died [32]. Several clinical risks have been associated with GDM, 
both for the mother, such as hypertension, cesarean section, 
and possibility of developing type 2 diabetes, as well as for the 
newborn, such as preterm birth, macrosomia, shoulder dysto
cia, neonatal hypoglycemia, respiratory distress syndrome, and 
congenital abnormalities [33]. Owing to the strong correlation 
between GDM and maternal/perinatal/neonatal complications, 
an early diagnosis is highly recommended.

In a recent review and meta-analysis, it was shown that risk 
for perinatal mortality, and neonatal hypoglycemia was 
greater among early-onset GDM women compared to late- 
onset GDM women, despite treatment [34].

As a result, screening for GDM should be done as soon as 
pregnancy is confirmed, especially in high-risk patients, by 
using fasting plasma glucose cutoff values [35].

The oral glucose tolerance test (OGTT) remains the gold 
standard for a GDM diagnosis, even though not devoid of 
limitations, principally associated with patient compliance 
[36]. One approach, adopted in some countries is a two-step 
vs one-step testing procedure, although it appears to have 
similar diagnostic efficiency [37]. Depending on resources, 
a universal screening of pregnant women has been implemen
ted in some locations while others choose selective screening 
based on risk factors (age, obesity, obstetric history, and eth
nicity) [38]. Some serum proteins like insulin, adiponectin, 
C-reactive protein, sex hormone globulin, and glycosylated 
fibronectin are widely investigated as markers of this patholo
gical condition [39–41]. Although these results are promising, 
such predictive biomarkers are yet to achieve clinical 
applicability.

Advances in molecular biology have recently identified 
novel biomarkers, which offer the potential to improve GDM 
risk prediction and, consequently, enable application of inter
vention protocols. These biomarkers can be readily measured 
in biological fluids, such as blood, plasma, and serum, allowing 
accurate low-cost diagnosis with improved patient compliance 
[42]. For example, it was observed that genetic variants, such 
as single nucleotide polymorphisms (SNPs) in genes involved 
in specific metabolic pathways may predispose pregnant 
women to develop GDM [43]. This potentially would allow 
analysis of a set of SNPs that provide indicators for GDM 
screening [44].

DNA methylation could also represent an interesting 
potential parameter correlating with a range of pathophysio
logical processes, including GDM [45]. Indeed, it was demon
strated that DNA methylation is highly altered in the placenta 
and cord blood of women with GDM [46]. Micro-RNAs have 
also proven to be important metabolic regulators during preg
nancy, playing a role in GDM onset [47], which would make 
them ideal candidates for GDM detection. However, 
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establishment of the specificity and sensitivity of potential 
new biomarkers for GDM diagnosis is required – including 
external validation and population studies – before they can 
be used in clinical practice.

4.2. Why GDM should be treated

The Hyperglycemia and Adverse Pregnancy Outcome (HAPO) 
Study evaluated the risk of adverse outcome associated with 
degrees of glucose intolerance during pregnancy and con
firmed the link between maternal glucose and neonatal adip
osity and suggested that this relationship is mediated by fetal 
insulin production influencing fetal growth [48].

Moreover, if not diagnosed and/or untreated, GDM can 
lead to short-term risks including labor induction, shoulder 
dystocia, C-section, macrosomia, large for gestational age 
(LGA) babies, neonatal hypoglycemia, NICU admission [49]. 
From a lifelong perspective, approximately 40% of all women 
who are diagnosed with GDM progress to type 2 diabetes 
within 5 years post-delivery, in addition to their increased 
risk of GDM in future pregnancies [50,51].

Noteworthy, infants born to mothers with gestational dia
betes are at increased risk of impaired glucose regulation, 
obesity, and diabetes, leading to a vicious cycle of accumu
lated risks in the next generation [52,53]. A recent follow-up 
study reported the longitudinal effects of GDM in the off
spring. It included 4.160 children aged 10–14 years, whose 
mothers had a 75-g OGTT at ∼28 weeks of gestation with 
blinded glucose values and underwent an OGTT. Offspring 
exposed to untreated GDM in utero are insulin-resistant with 
limited β-cell compensation compared with offspring born to 
mothers without GDM. GDM is significantly and independently 
associated with childhood intolerance to glucose [54].

4.3. Lifestyle changes

With regards to management, before any therapeutic inter
vention, the mainstay for GDM approach is based on lifestyle 
changes with adequate diet and exercise, aiming to achieve 
glycemic targets. A recent individual patient data meta- 
analysis reported that such an approach was efficacious in 
containing gestational weight gain while the impact on GDM 
diagnoses was reported only for selected populations. No 
other perinatal outcomes were reported as significantly 
affected by lifestyle changes [55]. This was mainly due to the 
heterogeneity of approach in the primary trials which included 
different diets and physical activity programs. Moreover, 
adherence to lifestyle changes is generally poor and it is 
inversely correlated with efficacy, namely on GDM onset [56]. 
Anyway, if glycemic targets are not met, then insulin treat
ment should be considered without delay, which may also 
improve the woman’s health-related quality of life [57]. 
Indeed, insulin treatment is associated with less risk of neona
tal hypoglycemia and provides a good plasma glucose con
trol [58].

4.4. Insulin sensitizers

Earlier observational studies [59–61] suggested that metfor
min treatment was associated with a lower risk of GDM, 
although the designs of these studies appear prone to differ
ent sorts of bias. Indeed, the above findings were not con
firmed in a trial of 274 pregnancies among 257 women with 
PCOS who were randomly assigned to receive metformin 
(2000 mg/day) or placebo from the first trimester until deliv
ery. The patients treated with metformin (17.6%) and placebo 
(16.9%) presented a very similar prevalence of GDM. No sig
nificant differences were observed in the prevalence of pre
eclampsia or preterm delivery [62].

Two further trials investigated metformin for the preven
tion of large for gestational age babies. They included a total 
of >800 pregnant obese mothers (BMI >30) who received 
1500 mg (till 2500 mg) oral metformin daily (or placebo), 
starting early in the second trimester. No efficacy of interven
tion was reported on birthweight and the rate of GDM was 
similar in metformin- and placebo-treated groups [63,64]. 
Interestingly, a reduction of preeclampsia was reported with 
metformin (3.0%) in respect to placebo (11.3%) [63].

On the other hand, several clinical trials demonstrated the 
significant efficacy of inositols, especially MI, in GDM man
agement (Table 1). Indeed, the concomitant administration of 
MI and DCI seems to perform less well than MI alone. When 
the two stereoisomers were directly compared, the non- 
inferiority analysis demonstrated the largest benefit for 
women treated with MI alone compared to those who 
received MI plus DCI or DCI alone [65]. This effect can also 
be explained referring to the competition between MI and 
DCI at the transporter site in the intestine. Indeed, SMIT2 in 
human cells exerts a similar affinity for both compounds with 
a Km value between 100 and 160 µM, depending on the cell 
model used to determine it [13]. An in vivo pharmacokinetic 
study demonstrated the DCI inhibitory effect on MI bioavail
ability [66]. Obviously, a significant increase of DCI concen
tration in the gut, due to exogenous administration, hinders 
MI absorption with consequences on its bioavailability and, 
implicitly, its efficacy.

A recent systematic review and meta-analysis supported 
the prophylactic treatment with MI in the prevention of 
GDM. Among the included studies, all but one administered 
MI alone (2 g MI plus 200 μg folic acid, twice daily), while 
another one used a combination of lower MI dose (1100 mg) 
plus 27.6 mg DCI/day. The findings demonstrate that the 
administration of 2 g MI twice daily was associated with 
improved glycemic homeostasis, reduced GDM, and preterm 
delivery rate, with respect to control groups, all supplemented 
with folic acid, except one trial [30].

Moreover, a secondary analysis from three trials reported 
that the same dose of MI supplementation in women at risk 
for GDM affected birthweight, reducing the rate of both 
macrosomic newborns and LGA babies [76]. Such neonatal 
impact agrees with the evidence that dietary glycemic index 
directly correlates with LGA in newborns [77] and indirectly 
demonstrates that MI supplementation improves glycemic 
control in those pregnancies.
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Finally, in a condition where insulin-resistance is pathogenetic 
like PCOS, the beneficial effects of MI supplementation on hor
monal and reproductive disturbances [20] were specifically 
reported also in pregnancy, where GDM rate was reduced [78].

From the experimental point of view, recent animal stu
dies showed that combined inositols treatment (MI/DCI 40:1) 
in pregnant mouse complicated by metabolic syndrome and 
obesity improved blood pressure, glucose levels at the glu
cose tolerance, as well as leptin levels [79]. In addition, the 
same combination of inositols treatment improved not only 
maternal outcomes, but also offspring weight at birth as well 
as glucose tolerance test, and vascular reactivity in their adult 
life, thus reducing the vicious cycle of dysmetabolism [80].

Finally, it should be highlighted that inositols administra
tion in pregnancy was well tolerated and found to be safe, 
unlike metformin which has been associated with several 
gastrointestinal symptoms [63].

5. Prevention of NTDs: the role of MI

5.1. Background to NTDs

Neural tube defects (NTDs) are a group of congenital malforma
tions affecting the brain and spinal cord that originate at various 
times during gestation. Some authors use the term ‘NTDs’ to 
denote defects that specifically result from faulty neural tube 

closure, particularly myelomeningocele (i.e. open spina bifida) 
and anencephaly. However, NTDs are sometimes considered to 
also include defects that arise by other embryonic and fetal 
mechanisms, including encephalocele (a brain herniation defect) 
and skin-covered low spinal ‘dysraphic’ conditions (secondary 
neurulation defects) [81]. Hydrocephalus and Chiari II malforma
tion are closely associated with myelomeningocele and so are 
frequently present in individuals with NTDs.

Many different factors affect susceptibility to NTDs, including 
genetic variants and environmental influences, including the anti
epileptic drugs valproic acid and carbamazepine [81]. Nutritional 
status is important, with folate and vitamin B12 levels in maternal 
blood being independent risk factors for NTDs [82]. When taken 
together with the findings of the randomized controlled trial of 
vitamin usage in NTD prevention [83], this evidence has led to the 
recommendation that all women planning a pregnancy should 
take folic acid (FA)-containing supplements to minimize the risk of 
NTDs [84]. Moreover, many countries now mandate addition of FA 
to staple foods, to counteract folate deficiency on a population- 
wide basis, and so enhance NTD prevention [85].

5.2. Obesity and diabetes as risk factors for NTDs

Maternal obesity and poorly controlled diabetes mellitus dur
ing pregnancy are established risk factors for NTDs [86,87], 

Table 1. Clinical trials investigating the effects of inositols supplementation in pregnant women.

Study Population
Active 

Intervention Main outcome Delivery outcomes Perinatal outcomes

Matarrelli 
et al 2013 
[67]

Non-obese women with an elevated 
fasting glucose in the first or 
early second trimester 

N = 36 (treated) 
N = 39 (control)

MI Lower abnormal OGTT and insulin 
therapy

Lower rates of 
Polyhydramnios

Lower neonatal hypoglycemia, birth 
weight, fetal abdominal 
circumference, higher GA at 
delivery

D’Anna 
et al 2013 
[68]

Outpatients with a parent with type 2 
diabetes 

N = 110 each group

MI+FA Lower GDM rate No differences in 
CS and PTB rates

Significant differences between 
groups on macrosomia rate and 
birth weight

Malvasi 
et al 2014 
[69]

Non-obese healthy women at 13th 
−24th week of pregnancy 

N = 24 each group

MI+DCI+FA 
+Mn2+

Improvement of glycemia and 
blood parameters (except 
diastolic blood pressure

– –

D’Anna 
et al 2015 
[70]

Obese women at 12–13 weeks of 
gestation 

N = 110 each group

MI+FA Lower GDM rate No differences in 
CS and PTB rates

No differences in birth weight and 
macrosomia

Santamaria 
et al 2016 
[71]

Overweight, non-obese women 
N = 110 each group

MI+FA Lower GDM rate No differences in 
CS and PTB rates

No differences in birth weight and 
macrosomia

Lubin 
et al 2016 
[72]

Women with GDM uncontrolled by 
diet 

N = 32 (treated) 
N = 28 (control)

MI+FA Lower need of insulin treatment Lower labor 
induction

No differences in birth weight and 
macrosomia

Farren 
et al 2017 
[73]

Women with a family history of 
diabetes 

N = 120 each group

MI+DCI+FA No changes in GDM rate No differences in 
CS and PTB rates

Higher incidence of neonatal 
hypoglycemia and lower neonatal 
jaundice

Fraticelli 
et al 2018 
[74]

Women with GDM 
N = 20 each group

MI+FA 
DCI+FA 
MI+DCI+FA

Lower HOMA index and weight 
gain with MI 

Lower need for insulin therapy in 
MI and MI+DCI

No differences in 
CS, induction 
and PTB rates

Lower birth weight in inositol groups

Pintaudi 
et al 2018 
[75]

Women with GDM 
N = 6 each group

MI+FA Reduction of glucose variability No differences in 
CS and PTB rates

No differences in birth weight and 
macrosomia

Celentano 
et al 2020 
[65]

Non-obese women with elevated 
fasting glucose in the first or 
early second trimester 

N = 105 (treated) 
N = 52 (control)

MI 
DCI 
MI+DCI

Lower abnormal OGTT 
with MI

No differences in 
CS and PTB rates

Lower birth weight, fetal abdominal 
circumference, and higher GA at 
delivery with MI
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although the complexity of the diabetic milieu has made it 
difficult to pinpoint the precise mechanism(s) by which the 
diabetic state enhances NTD risk.

The polyol pathway became of attention in the last century. 
Aldose reductase, key enzyme in this pathway, converts glu
cose to sorbitol, which is further processed to fructose. Under 
normal conditions, this enzyme has a low affinity for glucose, 
and it processes small amount of substrate. However, in dia
betes mellitus, the hyperglycemia in some cells causes 
a marked production of sorbitol with a concomitant reduction 
of MI concentration.

The depletion of MI has long been thought to be the 
underlying defect responsible for decreased nerve conduction 
velocity in experimental diabetes, leading to increased embryo 
malformations, such as neural tube defects.

Therefore, the potential of aldose reductase inhibitors has 
been investigated, with the aim to restore MI tissue content. 
However, treatment with aldose reductase inhibitors failed to 
correct MI reduction, did not prevent malformations in the 
embryos and was found associated with significant side effects 
[88–90].

The failure of aldose reductase inhibitors to prevent dia
betic malformations suggested that the polyol pathway was 
not involved; in contrast, supplementation with MI restored MI 
tissue content and reduced the incidence of neural tube 
defects, suggesting the involvement of MI in the mechanism 
of diabetic embryopathy [91,92].

While hyperglycemia alone is sufficient to cause NTDs in 
cultured rodent embryos [93], other features of the diabetic 
environment, including the ketone β-hydroxybutyrate, can 
also produce NTDs [94].

The effects of the diabetic milieu on the developing rodent 
neural tube include intracellular oxidative stress and neuroe
pithelial cell apoptosis, with many studies showing that anti
oxidant treatment can protect against these effects [95,96]. 
Nevertheless, precisely how such effects lead to NTDs is 
unclear. One possibility is a reduction in cellular expression 
of genes that are vital for neural tube closure, either as a result 
of cell death or down-regulation of gene expression. For 
example, Pax3 loss of function causes both cranial and spinal 
NTDs [97], and some studies have identified disruption of Pax3 
expression in mouse embryos of diabetic mothers [98].

In humans, hyperinsulinemia has been suggested as 
a possible mechanism leading to elevated NTD risk in obese 
mothers who often have type II diabetes [99]. Even in the 
absence of diabetes, NTDs have been significantly associated 
with maternal periconceptional increased intake of simple 
sugars and a high glycemic index, as well as with features of 
the ‘metabolic syndrome’ [100–102]. Hence, there is plentiful 
evidence linking dysregulation of glucose metabolism, in both 
types 1 and 2 diabetes, with NTDs.

5.3. Inositols and NTDs: evidence from animal models

Diabetic tissues tend to be inositol-deficient, in conjunction 
with elevated glucose levels [103], and rat embryos cultured 
under hyperglycemic conditions exhibit diminished MI levels 
[90]. At neurulation stages, MI deficiency but not other ‘vita
min’ deficiencies leads to failure of cranial NTDs in cultured rat 

embryos [104]. Hence, inositol is essential for the neural tube 
closure process. In terms of prevention, MI supplementation 
can diminish the frequency of NTDs resulting from hypergly
cemic conditions in rats, both in vivo and in embryo culture 
[105,106].

Perhaps of most relevance to human NTDs, inositol can 
reduce the frequency of NTDs in a mouse genetic NTD 
model [107]. A multifactorial etiology underlies most human 
NTDs, with genetic predisposing variants interacting with 
environmental factors. In the curly tail mouse, 
a hypomorphic allele of the Grhl3 gene is the major genetic 
change, with ‘modifier’ genetic variants and various environ
mental influences affecting frequency and severity of NTDs 
[108,109]. Importantly, NTDs in the curly tail strain are FA- 
resistant, therefore mimicking FA non-responsive human 
NTDs. Both MI and DCI are preventive in the curly tail model, 
an effect that is dependent on specific isoforms of protein 
kinase C [110,111]. This preventive action of MI in the curly tail 
strain has been replicated in an independent laboratory [112]. 
Furthermore, in a related strain in which cranial NTDs were 
inducible by folate deficiency, these defects were prevented 
by maternal MI supplementation [113]. These findings suggest 
potential overlap in response to FA and MI for some NTDs.

5.4. Inositols and NTDs: evidence from human studies

Diminished MI concentrations have been detected in the 
plasma of pregnant Dutch women with NTD-affected fetuses. 
The odds ratio for NTD risk associated with extremely low 
maternal MI concentration (10–13.2 microM/L) was 2.6 (95% 
CI, 1.1–6.0) [114]. Moreover, a genetic connection between 
inositol metabolism and NTDs was suggested by findings 
that cranial NTDs arise in mice with loss of function of Itpk1, 
encoding inositol 1,3,4-trisphosphate 5/6-kinase which pro
duces the highly phosphorylated metabolite, inositol hexaki
sphosphate (IP6) [115]. A subsequent study in a high-risk area 
of China found an association of a maternal polymorphism of 
ITPK1 increased risk of NTD pregnancy [116].

5.5. Inositol in the prevention of human NTDs

Population-wide supplementation with FA through food for
tification has significantly reduced the prevalence of NTDs in 
many countries [85]. However, FA is only partially effective, 
and NTD cases continue to occur worldwide, with or without 
voluntary or mandatory FA consumption. Hence, additional 
strategies are needed to achieve further prevention.

Building on the data from animal models, an inositol sup
plementation study was conducted in Italy, among high-risk 
women who had experienced 1 or 2 previous NTD-affected 
pregnancies. In their next pregnancy, the women took 
500–1000 mg/day MI plus 5 mg/day FA, from 2 months pre- 
conception, until 60 days of pregnancy. No NTD recurrences 
were observed among 29 pregnancies of 27 women, whereas 
2–8 recurrent NTDs would be expected, based on typical 
population recurrence frequencies [117]. Most of the women 
were likely folate-resistant, having undergone appropriate 
peri-conceptional folate intake in their previous NTD-affected 
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pregnancies. Hence, these findings support a preventive effect 
of MI on NTD recurrence in high-risk pregnancies.

A phase I/II double-blind, case-control clinical trial (the 
PONTI study; EudraCT2006-000157-22) was performed to 
gain further experience of MI supplementation in human 
pregnancy [118]. The subjects were UK women with 
a previous NTD pregnancy who planned to become pregnant 
again. Of 117 women contacted, 99 proved eligible, and 61 
undertook a detailed screening questionnaire of whom 47 
(77% of those screened) agreed to be randomized to pericon
ceptional supplementation with MI (1 g/day) plus FA (5 mg/ 
day), or placebo plus FA. Of 33 randomized pregnancies, there 
was one NTD recurrence in the placebo plus FA group (n = 19) 
and no recurrences in MI plus FA group (n = 14). Of 52 women 
who declined randomization, the periconceptional supple
mentation regime and outcomes of 22 further pregnancies 
were documented. Two NTDs recurred in women who took 
only FA in their next pregnancy (n = 3), whereas there were no 
recurrences in women who took MI plus FA in their next 
pregnancy (n = 19). Overall, NTDs recurred among 0/33 MI- 
supplemented pregnancies and 3/22 FA-only pregnancies 
(p = 0.06, Fisher’s Exact test).

Combining data from the Italian and PONTI studies, with 
post-PONTI experience of MI use, a total of 76 women at high 
risk of NTDs (52 with one and 24 with two or more previous 
affected pregnancies) have taken MI plus FA in a subsequent 
pregnancy, with no recurrences. Assuming a 3% recurrence 
risk after one NTD pregnancy and 10% after two [119], as used 
in genetic counseling, this indicates that 4 recurrences would 
be expected among 76 pregnancies. The observed 0/76 recur
rences among MI-supplemented pregnancies are significantly 
different from this expectation (Single Proportion Fisher’s 
Exact, p = 0.016). These observations, although on small 
patient numbers are encouraging that MI may have value in 
increasing NTD prevention beyond that achievable by FA 
alone.

5.6. Inositol and NTD prevention: next steps

A definitive answer to the question of the efficacy of MI in 
enhancing NTD prevention is likely to require a fully powered, 
randomized clinical trial (RCT). However, this will necessitate 
large numbers of pregnancies, owing to the relatively low 
recurrence rate for NTDs. Given the current state of knowledge 
about inositol and NTD prevention, it is important to consider 
whether an RCT is ethically acceptable, given that the study 
design would require withholding inositol supplements from 
a significant number of pregnancies.

Glasziou et al. [120] argue that expensive and time- 
consuming RCTs may be unnecessary in cases where a novel 
treatment has an obvious effect (i.e. a large ‘signal-to-noise’ 
ratio). However, for NTDs, the effect of inositol at the popula
tion level is likely to be small, as NTD frequency is relatively 
low (0.1% for first occurrence; 2–3% for recurrence), and any 
effect of inositol will be additional to FA-mediated prevention. 
On the other hand, for individual women who exhibit FA- 
resistance, inositol is currently their only option to increase 
the likelihood of a normal pregnancy.

Freedman [121] suggested that ‘clinical equipoise’ should 
be considered to exist when there is genuine uncertainty 
within the expert medical community about the preferred 
treatment. Under such circumstances, an RCT would be ethi
cally justified. In the case of NTDs, MI + FA supplements 
certainly have not superseded FA-only supplements; world
wide, the great majority of low-risk and high-risk women 
receive FA only (or no supplement at all). To date very few 
pregnancies have been supplemented with inositol, and this 
has been used largely where high-risk women have sought 
advice from the authors of this article.

We conclude that the Glasziou criterion for avoiding an RCT 
is not met by MI supplementation for NTDs, and that currently 
the expert field is in a state of clinical equipoise with regard to 
use of MI in addition to FA. Hence, an RCT appears indicated 
to provide a definitive answer to the efficacy of MI as an 
adjunct preventive supplement for NTDs.

6. Conclusions

Gestational diabetes mellitus (GDM) and congenital abnorm
alities of fetal central nervous system, such as neural tube 
defects (NTDs), are strongly correlated to glycemic status of 
pregnant women.

Before starting a therapeutic intervention to achieve 
a healthy pregnancy, the principle approach to reach the 
glycemic targets is based on lifestyle changes by means of 
an adequate diet and exercise.

When glycemic targets are not addressed, an intervention 
is reasonable to avoid complications both for the mothers and 
for the fetus.

A supplementation of MI starting at least one month prior 
to conception and continued until 36th week of pregnancy is 
expected to prevent NTDs as well as GDM onset and its 
related negative perinatal outcomes. As a side effects free 
molecule at the usually administered doses, MI therefore 
becomes a candidate for being one of the first tools to be 
used in pre-conceptional medicine.

7. Expert opinion

The data reported in this brief narrative review are highly 
encouraging over the use of inositols, namely MI, in pregnant 
women. To date, the controlled studies available in literature 
are reassuring about its safety and tolerability. Adverse effects 
in the short-term period have not been reported yet, either for 
mothers or babies, despite the widespread use of these sup
plements since several years, in many countries.

Although confirmatory studies will be necessary to eluci
date the mechanisms involved [122], there is a general agree
ment that MI administered early in pregnancy effectively 
prevents GDM onset (Figure 1). Proofs are available for differ
ent categories of women at risk, namely overweight, obese, 
and patients affected by PCOS. In addition, significant reduc
tion of gestational hypertensive disorders, preterm birth, and 
large for gestational age babies suggest a perinatal benefit of 
MI supplementation. Whether this would apply to low-risk 
population requires the design of appropriate controlled trials, 
hopefully comparing different inositols combinations.
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To date, although several clinical trials are ongoing, MI 
supplementation has not yet been inserted in clinical guide
lines for GDM prevention/treatment.

For congenital malformations like NTDs, MI can offer 
a novel means of prevention via peri-conceptional supplemen
tation, particularly in those women whose previous pregnan
cies have proven resistant to FA supplementation (Figure 1).

Thus, given the extensive data documenting the safety of 
peri-conceptional MI supplementation derived from trials done 
in Assisted Reproduction, a combination of MI and FA could be 
recommended for every woman at high risk for NTDs.

Furthermore, it would be interesting to carry out studies to 
reduce the dose and perhaps improve absorption and bioavail
ability. Recent research using co-administration of MI and α-LA 
[26] is an example of how MI usage may be clinically improved. We 
believe that this association in the next years could conquer 
a relevant position as insulin-sensitizing treatment for GDM and 
NTDs prevention, due to both efficacy and absence of side effects.
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